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G006 ey

Algorithm 2 Alternative formulation of the
non-boolean amplitude amplification algorithim.

1. initialize [¥) = [Wq)
402,404 2. fork = 1to K do
130,432 % update |¥) 1= Sy, U, [X @ 1] |¥)
4 end for
5

440 5 Measure the ancilla in the §/1 basis,

FIG. 8
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NON-BOOLEAN QUANTUM AMPLITUDE
AMPIFICATION AND QUANTUM MEAN
ESTIMATION SYSTEMS AND METHODS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0001] The invention described in this patent application
was made with Government support under the Fermu
Research Alliance, LLC, Contract Number DE-ACO2-
(07CH11359 awarded by the U.S. Department of Energy. The
Government has certain rights in the invention.

FIELD OF THE INVENTION

[0002] The present invention relates generally (o quantum
computing technology. More particularly, this invention
pertains to devices, systems, and associated methods for
achieving computational speed increases in quantum algo-
rithms.

BACKGROUND OF THE INVENTION

[0003] Grover’s algorithm is a quantum search algorithm
for finding the unique input x,,,, that satisfies Equation (1),
as follows:

fboo[(xgood)zl » O

for a given boolean function f,,: {0, 1, ..., N-1} —={0,1}.
Such an input x,,,, satisfying this boolean function is
referred to as the “winning” input of f,_,,. Grover’s algo-
rithm has also been adapted to work with boolean functions
with multiple winning inputs, where the goal is to find any
one of the winning inputs.

[0004] An important generalization of Grover’s algorithm
is the amplitude amplification algorithm in which the func-
tion f,,,, is accessed through a boolean quantum oracle

good

Ufw that acts on the orthonormal basis states [0y, ..., IN-1
y as follows (Equation (2)):
=) i froor(a) =1, @

U fyoor) = { Flx), i froar(x) = 0.

[0005] In this way, the oracle marks the winning states by
flipping their phase (that is, shifting the phase by m). Given
a superposition state [y, ) , the goal of the amplitude ampli-
fication algorithm is to amplify the amplitudes (in the
superposition state) of the winning states. The algorithm
accomplishes this iteratively by initializing a quantum sys-
tem in the state [y, and performing the operation S, [A,wa
on the system during each iteration, where

Swe=21Wo) 1 Vol ®

As shown in Equation (3), I is the identity operator. Per-
forming a measurement on the system after the iterative
amplification process results in one of winning states with
high probability. Grover’s original algorithm is a special
case of the amplitude amplification algorithm, where a) the
uniform superposition state Is) given by Equation (4):

@

1 N-1
I) = o
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is used as the initial state Iy,) of the system, and b) the
number of winning inputs is exactly one.

[0006] Closely related to the amplitude amplification algo-
rithm is the amplitude estimation algorithm, which com-
bines features from the amplitude amplification algorithm
and a quantum phase estimation (QPE) algorithm to estimate
the probability that making a measurement on the initial
state Iy, will yield a winning input. If the uniform super-
position state Isy is used as [y, ) , the amplitude estimation
algorithm can help estimate the number of winning inputs of
Froor (Note: This special case is also referred to as the
quantum counting algorithm).

[0007] The amplitude amplification algorithm and the
amplitude estimation algorithm have a wide range of appli-
cations and are important primitives that feature as subrou-
tines employed by other quantum algorithms. The amplitude
amplification algorithm can be used to find a winning input
t0 £poor With "N queries of the quantum oracle, regard-
less of whether the number of winning states is a priori
known or unknown (Note: The (j(\’N) and ¢ (N) scalings
for the quantum and classical algorithms, respectively, hold
assuming that the number of winning states does not scale
with N). This represents a quadratic speedup over classical
algorithms, which typically require ¢ (N) evaluations of the
function £, Similarly, the amplitude estimation algorithm
also offers a quadratic speedup over the corresponding
classical approaches. The quadratic speedup due to the
amplitude amplification algorithm has been shown to be
optimal for oracular quantum search algorithms.

[0008] A limitation of known amplitude amplification and
estimation algorithms is that they work only with boolean
oracles, which classify the basis states as good and bad. In
situations where one is interested in using these algorithms
in the context of a non-boolean function of the input x, a
typical approach is to create a boolean oracle from the
non-boolean function by using a threshold value of the
function as a decision boundary. That is, the winning states
are the ones for which the value of the function is, say, less
than the chosen threshold value. In this way, the problem at
hand may be adapted to work with the standard amplitude
amplification and estimation algorithms.

[0009] Accordingly, a need exists for a solution to at least
one of the aforementioned challenges in increasing the
computation speed of widely applicable quantum algo-
rithms. For instance, an established need exists for adapta-
tion of certain primitive quantum algorithms to work
directly with non-boolean functions.

[0010] This background information is provided to reveal
information believed by the applicant to be of possible
relevance to the present invention. No admission is neces-
sarily intended, nor should be construed, that any of the
preceding information constitutes prior art against the pres-
ent invention.

SUMMARY OF THE INVENTION

[0011] With the above in mind, embodiments of the pres-
ent invention are related to quantum amplitude amplification
and amplitude estimation algorithms to work with non-
boolean oracles. By way of definition, the action of a
non-boolean oracle U, on an eigenstate Ix) is apply a
state-dependent, real-valued phase-shift ¢(x). Unlike bool-
ean oracles, the eigenvalues exp(ip(x)) of a non-boolean
oracle are not restricted to be *1.
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[0012] In one embodiment of the present invention, a
non-boolean amplitude amplification algorithm, starting
from an initial superposition state ly,), preferentially
amplifies the amplitudes of the basis states based on the
value of cos(p). An objective of the algorithm is to prefer-
entially amplify the states with lower values of cos(ip(x)).
The algorithm is iterative in nature such that, after K
iterations, the probability for a measurement of the system
to yield x (namely p,(x)) differs from the original probabil-
ity po(x) by a factor that is linear in cos(¢q(x)). The coefli-
cient A, of this linear dependence controls the degree (and
direction) of the preferential amplification.

[0013] More specifically, embodiments of the present
invention (in one or more of method, system, and/or device
form) may include the following steps:

[0014] (1) Initialize a two-register system in the ¥,
) state:
[0015] (2) Perform K iterations: During odd iterations, act

on an input basis state using a selective phase-flip unitary
operator circuit Sy, and a controlled unitary operator circuit
U, During even iterations, act on an input basis state using
the selective phase-flip unitary operator circuit Sy, and a
controlled inverse unitary operator circuit Uqf; and

[0016] (3) After the K iterations, measure the ancilla in the
0/1 basis.
[0017] Up to a certain number of iterations, the iterative

steps may be designed to amplify the amplitude of the basis
states 10,x) and I1,x) with lower values of cos(¢p(x)). The
measurement of the ancilla at the end of the iterations may
be performed simply to ensure that the two registers are not
entangled in the final state.

[0018] In another embodiment of the present invention, a
quantum mean estimation algorithm uses QPE as a subrou-
tine in order to estimate the expectation of U, under hj,
y (Le, ) Pohpglpg ). The algorithm offers a quadratic
speedup over the classical approach of estimating the expec-
tation, as a sample mean over randomly sampled inputs.
[0019] More specifically, embodiments of the present
invention (in one or more of method, system, and/or device
form) may include the following steps:

[0020] (1) Perform the QPE algorithm with a) the two-
register unitary operator under consideration, and b) the
superposition state |%;) in place of the eigenstate required
by the QPE algorithm as input. Let the output of this step,
appropriately scaled to be an estimate of the phase angle in
the range [0,27), be .

[0021] (2) Return cos() as the estimate for cos(6) (i.e.,
the real part of E,, [¢%]).

[0022] These and other objects, features, and advantages
of the present invention will become more readily apparent
from the attached drawings and the detailed description of
the preferred embodiments, which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] The preferred embodiments of the invention will
hereinafter be described in conjunction with the appended
drawings provided to illustrate and not to limit the invention,
where like designations denote like elements, and in which:
[0024] FIG. 1 is a schematic diagram depicting an exem-
plary quantum circuit implementing a selective phase-flip
unitary operator for non-boolean amplitude amplification
according to an embodiment of the present invention;

[0025] FIG. 2 is a schematic diagram depicting an exem-
plary quantum circuit implementing a first conditional oracle
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call unitary operator for a non-boolean amplitude amplifi-
cation algorithm according to an embodiment of the present
invention;

[0026] FIG. 3 is a schematic diagram depicting an exem-
plary quantum circuit implementing a second conditional
oracle call unitary operator for a non-boolean amplitude
amplification algorithm according to an embodiment of the
present invention;

[0027] FIG. 4 is schematic diagram depicting a quantum
circuit for a first exemplary non-boolean amplification algo-
rithm according to an embodiment of the present invention;
[0028] FIG. 5 is pseudocode for a non-boolean amplifi-
cation algorithm according to FIG. 4;

[0029] FIG. 6 is a state diagram depicting stage evolution
of a two-register system through iterations of the non-
boolean amplitude amplification algorithm of FIG. 5;
[0030] FIG. 7 is schematic diagram depicting a quantum
circuit for a second exemplary non-boolean amplification
algorithm according to an embodiment of the present inven-
tion;

[0031] FIG. 8 is a non-boolean amplification algorithm
according to FIG. 7,

[0032] FIG. 9is a schematic diagram depicting a quantum
circuit for a non-boolean mean estimation algorithm accord-
ing to an embodiment of the present invention;

[0033] FIG. 10 depicts a graph of oracle function and
initial state of a toy example for quantum simulation;
[0034] FIG. 11 depicts a graph of quantum simulation
results from application of the non-boolean amplitude
amplification algorithm of FIG. 4 to the toy example of FIG.
10; and

[0035] FIG. 12 depicts graphs of quantum simulation
results from application of the non-boolean mean estimation
algorithm of FIG. 9 to the toy example of FIG. 10.

[0036] Like reference numerals refer to like parts through-
out the several views of the drawings.

DETAILED DESCRIPTION OF THE
INVENTION

[0037] The present invention will now be described more
fully hereinafter with reference to the accompanying draw-
ings, in which preferred embodiments of the invention are
shown. This invention may, however, be embodied in many
different forms and should not be construed as limited to the
embodiments set forth herein. Rather, these embodiments
are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the invention
to those skilled in the art.

[0038] Although the following detailed description con-
tains many specifics for the purposes of illustration, anyone
of ordinary skill in the art will appreciate that many varia-
tions and alterations to the following details are within the
scope of the invention. Accordingly, the following embodi-
ments of the invention are set forth without any loss of
generality to, and without imposing limitations upon, the
claimed invention.

[0039] As used herein, the word “exemplary” or “illustra-
tive” means “serving as an example, instance, or illustra-
tion.” Any implementation described herein as “exemplary”
or “illustrative” is not necessarily to be construed as pre-
ferred or advantageous over other implementations. All of
the implementations described below are exemplary imple-
mentations provided to enable persons skilled in the art to
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make or use the embodiments of the disclosure and are not
intended to limit the scope of the disclosure, which is
defined by the claims.

[0040] Furthermore, in this detailed description, a person
skilled in the art should note that quantitative qualifying
terms such as “generally,” “substantially,” “mostly,” and
other terms are used, in general, to mean that the referred to
object, characteristic, or quality constitutes a majority of the
subject of the reference. The meaning of any of these terms
is dependent upon the context within which it is used, and
the meaning may be expressly modified.

[0041] Referring initially to FIGS. 1-9, a non-boolean
quantum amplitude amplification algorithm, as also a quan-
tum mean estimation algorithm based in the non-boolean
quantum amplitude amplification algorithm, both according
to embodiments of the present invention are now described
in detail. Throughout this disclosure, the present invention
may be referred to as a family of non-boolean quantum
amplitude amplification algorithms, a family of non-boolean
quantum algorithms, a non-boolean quantum algorithm, a
non-boolean quantum method, a non-boolean quantum
oracle, a non-boolean quantum system, a method, an oracle,
and/or a system. Those skilled in the art will appreciate that
this terminology is only illustrative and does not affect the
scope of the invention. For instance, the present invention
may just as easily relate to an instantiation of an object from
a library of non-boolean quantum oracles.

[0042] Generally speaking, the present invention is a
generalization of amplitude amplification and estimation
algorithms to work with quantum oracles for non-boolean
functions. Hereinafter, the qualifiers ‘“boolean” and “non-
boolean” will be used to distinguish embodiments of the
present invention from known boolean versions of the
amplitude amplification algorithm and their related applica-
tions.

[0043] Oracle for a Non-Boolean Function:

[0044] The behavior of the boolean quantum oracle ﬁfmz
of Equation (2) may be generalized to non-boolean functions
by allowing the oracle to perform arbitrary phase-shifts on
the different basis states. More concretely, let @: {0, 1, . ..
, N-1} >R be a real-valued function, and let U, be a
quantum oracle given by Equation (5), as follows:

LI

N-1 ®)
U, = Zei“’(x)|.’c>(x|.

x=t

[0045] The actions of the oracle U, and its inverse U(PJr on
the basis states 10y, . .., IN=1) may be given by Equations
(6) and (7), as follows:

U lx)=e"*@lx } =[cos(@()rH sin(p(x))]1x ), 6

Uq,T )=y ) =[cos(@(x))—i sin(Q(x))]lx }. (7

[0046] Goal of the Non-Boolean Amplitude Amplification
Algorithm:

[0047] Given an oracle U, and an initial state Iy) , a goal
of the non-boolean amplitude amplification algorithm of the
present invention may be to preferentially amplify the
amplitudes of the basis states Ixy with lower values of
cos(@(x)), at the expense of the amplitude of states with
higher values of cos(®(x)). Depending on the context in
which the algorithm is to be used, a different function of
interest f (which is intended to guide the amplification) may
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be appropriately mapped onto the function cp. For example,
and without limitation, if the range of f is [0,1] and one
intends to amplify the states with higher values of f, then
options for formulating the problem in terms of co include
the following:

Q()=mf(x) or p(x)=arccos(1-2f(x)). (8)

In both cases of Equations (8), cos(@) is monotonically
decreasing in f.

[0048] The connection between the boolean and non-
boolean amplitude amplification algorithms may be seen as
follows: If either of the two options in Equations (8) is used
to map a boolean function £, onto @,,,, then

7, 1 fpeor(0) =1, ®

Prool (X) = {0, if freo(x) = 0.

[0049] In the case of Equation (9), the oracle U, and its
inverse U‘PJr both reduce to a boolean oracle as follows
(Equation 10):

Voo™ U‘Pbuaf: Uspoor (10

[0050] Congruently, the task of amplifying (the amplitude
of) the states with lower values of cos(¢) may align with the
task of amplifying the winning states Ix) with f,_,(x)=1.
[0051] Goal of the Quantum Mean Estimation Algorithm:

[0052] Given a generic unitary operator U and a state Iy,
), a goal of the quantum mean estimation algorithm may be
to estimate the quantity of Equation (11):

(Wol Uy} . an

[0053] The task of estimating the quantity of Equation (11)
may be phrased in terms of the oracle U, as estimating the
expectation of the eigenvalue €* for a state Ix) chosen
randomly by making a measurement on the superposition
state }/,) . The connection between the two tasks may be
seen in Equation (12), as follows:

N-1 N-1 (12)
WalUaldoy = Y Wole*Dediato) = 3 [alo) e,
x=0 x=0

wherein | { Xy, 12 is the probability for a measurement on
ly,) to yield x.

[0054] The only difference between (a) estimating
(YolU W) for an oracle U, and (b) estimating ¢ WUl
) for a generic unitary operator U is that {Iy|U, W) , . . .
, IN=1)} is known beforehand to be an eigenbasis of Ug,. On
the other hand, the eigenstates of a generic unitary operator
U may be a priori unknown. However, as described in detail
hereinbelow, the mean estimation algorithm does not use the
knowledge of the eigenstates and, therefore, may be appli-
cable for generic unitary operators U as well.

[0055] As described hereinabove, the mean estimation
algorithm of the present invention is a generalization of
known boolean amplitude estimation algorithm(s). Regard-
ing the connection between the respective tasks of these
algorithms, note that the eigenvalues of a boolean oracle
may be either +1 or —1, and the expectation of the eigenvalue
under Iy, is directly related to the probability of a mea-
surement yielding a winning state with eigenvalue —1. This
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probability is precisely the quantity estimated by the non-
boolean amplitude estimation algorithm of the present
invention.

[0056] Non-Boolean Amplitude Amplification Algorithm:

[0057] Setup and Notation: Various embodiments of a
non-boolean amplitude amplification algorithm as described
herein may include not only a quantum system, or qubit(s),
as input to a quantum oracle, but also may employ one extra
ancilla qubit. For example, and without limitation, let a
quantum system used in certain embodiments of the present
algorithm comprise two quantum registers. The first register
may contain the lone ancilla qubit, and the second register
(input qubit) may be acted upon by the quantum oracle.

[0058] The notations lay ®Ib) and la,by may both refer
to a state where the two registers are unentangled, with the
first register in state lay and the second register in state Ib) .
The tensor product notation & may also be used to combine
operators that act on the individual registers into operators
that simultaneously act on both registers. Such two-register
operators may be represented by boldface symbols (e.g.,
Sw, Uy D. Likewise, boldface symbols may be used to
represent the states of the two-register system in the bra-ket
notation (e.g., W) ). As used herein, any state written in the
bra-ket notation (e.g., y)) will be unit normalized (i.e.,
normalized to 1). The dagger notation (f) may be used to
denote the Hermitian conjugate of an operator, which is also
the inverse for a unitary operator.

[0059] Unless otherwise specified herein, {10y, 1),
IN-1) } may be used as the basis for (that is, as the state
space of) the second register. Any measurement of the
second register may refer to measurement in this basis.
Likewise, unless otherwise specified,

{10,0),10,1}, ... JON=1} JU{I1,0) 11,1}, ...
JLN-1) } 13)

may be used as the basis for the two-register system.

[0060] In Equation (14) below, let hy,) be the initial state
of the second register from which the amplification process
is to begin, and let A, be the unitary operator that changes
the state of the second register from 10} to hy,) (Note:
Assumed here, only for notational convenience, is that there
exists a state [0) | which is simultaneously an eigenstate of
U, as well as a special, easy-to-prepare state of the second
register; a person of skill in the art will immediately recog-
nize the algorithms described herein may be modified to
work even without this assumption):

N-1 (14)
o) = 40l0) = ) ap(w)le),

x=0

such that

N-1
e =1,
x=0

where a,(x) is the initial amplitude of the basis state Ix) .

[0061] The algorithm introduced hereinbelow may initial-
ize the ancilla (i.e., first register) in the |4+) state given by
Equation (15), as follows:
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D 1s)

4
[+ N

[0062] Anticipating this initialization, let the two-register
state I'¥;) be defined as in Equation (16), as follows:

[0, ¥o) HI1, ¢o) (16)

V2

1 N-1 .
= $Zaomno, 0+, 1]
x=0

[¥o) =1+, ¢o) =

[0063] Required Unitary Operations: The following uni-
tary operations may be used in certain embodiments of a
generalized amplitude amplification algorithm of the present
invention:

[0064] Selective Phase-Flip Operator. Let the two-register
unitary operator Sy, be defined as in Equation (17):

S, = 2[¥o)(¥ol-1 an
= 20, W)+, drol =1’

where L is the two-register identity operator. S, may leave
the state I¥,,) unchanged and may flip the phase of any state
orthogonal to [¥y) . Sy, may be the two-register general-
ization of S, used in counterpart boolean amplitude ampli-
fication algorithm(s). From Equations (14) and (16), it
follows (in Equation (18)) that

W, ) <[H®A,I0,0 ), (18)

where H is the Hadamard transform. Thus, Sy may be
expressed as in Equation (19):

S, =HOAG210,0) ( 0.0-N[HOALN. (19)

[0065] Referring initially to FIG. 1, an exemplary quan-
tum circuit 100 implementing non-boolean amplitude ampli-
fication according to an embodiment of the present invention
will now be described in detail. A quantum system of circuit
100 may comprise a first register (ancilla qubit) 110 and a
second register (input qubit) 120. The second register 120
may be configured to be acted upon by a quantum oracle
130. As illustrated, Equation (19) is used to drive an imple-
mentation of circuit 130 for S, , provided one has access to
the quantum circuits that implement A, (unitary operator
142) and A," (inverse unitary operator 144). Hadamard
transforms 150 are denoted as H.

[0066] Conditional Oracle Calls: Let the two-register uni-
tary operator U be defined as in Equation (20):

U=I0) {1QUH1) { 1IQU,T. (20)

[0067] This operator’s action on the basis states of the
two-register system is given by Equations (21) and (22):

Ugl0.0)=e"9®10,x) @n

U 5= @115} (22)

[0068] If the ancilla is in state 10y, U, acts U, on the
second register. On the other hand, if the ancilla is in state
1Ty, Uy, acts U(PJr on the second register. The inverse of U,
is given by Equation (23):

Uy,'=10) (0IQU 1) ( 1OU,, (23)
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and the action of U(PJr on the basis states is given by
Equations (24) and (25):

Uy 10,x) =e@10,x} (24
UpfIlx) =1 x) . (25)

[0069] The amplitude amplification algorithm for non-
boolean functions may involve calls to both U, and U(PJ‘.

[0070] Referring now to FIGS. 2 and 3, exemplary quan-
tum circuits 200 and 300 each implementing non-boolean
amplitude amplification according to an embodiment of the
present invention will now be described in detail. FIG. 2
depicts a circuit implementation 200 of U, using a) ancilla
210 serving as a control qubit, b) bit-flip (or Pauli-X) gates
240 denoted as X, and ¢) second register 220 acted upon by
controlled U, and U(PJr operations (i.e., oracles) 232, 234,
respectively. FIG. 3 depicts a circuit implementation 330 of
U(PT using a) ancilla 310 serving as a control qubit, b) bit-flip
(or Pauli-X) gates 340 denoted as X, and c) second register
320 acted upon by controlled U, and U(; operations 332,
334, respectively.

[0071] Algorithm Description:

[0072] Referring now to FIGS. 4 and 5, an exemplary
quantum circuit 400 and pseudocode 500 implementing a
non-boolean amplitude amplification quantum algorithm
according to an embodiment of the present invention will
now be described in detail. For example, and without
limitation, the amplitude amplification algorithm for non-
boolean functions is iterative and may comprise the follow-
ing steps:

[0073] (1) Initialize a two-register system in the ¥,
y state;

[0074] (2) Perform K iterations: During odd iterations
402, apply operations 430, 432 denoted Sy, U, on the
system. During even iterations 404, apply operations 430,
434 denoted Sy UJ on the system; and

[0075] (3) After the K iterations, measure 440 the ancilla
(first register 410) in the 0/1 basis.

[0076] Up to a certain number of iterations, the iterative
steps 402, 404 may be designed to amplify the amplitude of
the basis states 10,x)y and 11,x) with lower values of cos(¢
(x)). The measurement 440 of the ancilla 410 at the end of
the algorithm may be performed simply to ensure that the
two registers 410, 420 are not entangled in the final state 450
of the system. The specification of K (i.e., the number of
iterations to perform) is included in an analysis of the
present algorithm described hereinbelow.

[0077] Connection to Known Boolean Amplitude Ampli-
fication Algorithm:

[0078] From Equations (20) and (23), a person of skill in
the art will immediately recognize that for the boolean
oracle case given by ¢(x)=f,,,(x), U, and U(PJr both reduce
to I®Ufbm’ where Ufbm 1s the oracle used in known boolean
amplitude amplification algorithm(s). Furthermore, if a first
register is in the |+) state, from Equations (3) and (17), the

action of Sy is given by Equation (26):
Sg[H4) O ) 1=1+) D[S, Iy 1. (26)

[0079] Note that the first register is unaffected here. Thus,
for the boolean oracle case, the algorithm 400, 500 of FIGS.
4 and 5 may reduce to simply acting S,,, Gfbm on the second
register 420 during each iteration 402, 404; the ancilla qubit
410 remains untouched and unentangled from the second
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register 420. In this way, algorithm 400, 500 is a general-
ization of known boolean amplitude amplification algorithm
(s) described hereinabove.

[0080] The two key differences of the generalized algo-
rithm from the boolean algorithm, apart from the usage of a
non-boolean oracle, may be as follows:

[0081] (1) The addition of the ancilla 410, which doubles
the dimension of the state space of the system, and

[0082] (2) Alternating between using U, and U(PJr (opera-
tions 432 and 434, respectively) during the odd iterations
402 and even iterations 404.

[0083] Analysis of the Non-Boolean Amplitude Amplifi-
cation Algorithm:

[0084] Still referring to FIGS. 4 and 5, let ¥, ) be the
state of the two-register system after k=0, 1, ..., K iterations
of the amplitude amplification algorithm 400 (but before the
measurement 440 of the ancilla 410). For k>0, 'V, ) may be
recursively written as in Equation (27):

SuoUol¥i1), if K is odd, @n
o = Su, UfI¥-1), if K is even’

[0085] Let a, (0,x) and d,(1,x) be the normalized ampli-
tudes of the basis states 10,x) and 11,x) , respectively, in the
superposition W,y .

v @8
B = ) [0, 210, )+ (L, DL, ).

x=0

[0086] In the initial state ') , the amplitudes 34(0,x) and
,(1,x) are both given, from Equation (16), by the following
(Equation (29)):

dag(x) 29

f.

o(0, x) = (1, x) =

[0087] Let the parameter 0< [0,x] be implicitly defined by
Equation (30):

y-1 30
cos(@) = Z lag(x)>cos(iw(x)).

x=0

[0088] cos(B) is the expected value of cos(p(x)) over
bitstrings x sampled by measuring the state 1Y) .

[0089] 1Let the two-register states oty and Ify be defined
as follows (Equations (31) and (32)):

lon) =U, M%) 3D
IBY=U, 1%, ) . (32)

[0090] These register states may be used to track the
evolution of the system through the iterative steps 402, 404
of algorithm 400, 500. Using Equations (16), (20, and (23),
loty and 10y may be written as follows (Equations (33) and

(34)):
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N-1 (33)
loy = —Zao(x) 910, x) + e N1, ],
x=0

G4
18 = (Zaom [e740910, x) + £40]1, )],

[0091] Note that 8, Ioty, and IRy are all implicitly depen-
dent on the function @ and the initial state ly,). For
notational convenience, these dependencies are not explic-
itly indicated.
[0092] The First Iteration:
[0093] After one iterative step, the system may be in state
¥,y given by Equation (35):

I, ) =Sy, Ugl ¥y ) - (39
[0094] Using Equations (17) and (31), this state may be
written as follows (Equation (36)):

%) :S\yola) 2(¥ola) Py)—la) . 36)
[0095] From Equations (16), (30), and (33), it follows that

37
|ao(x)\ [¢#40, x10, xy + (1, 1, 1)

NI'—‘

(Folery =

DAL LT

|a0(x)\2[ei“”(x) + e*iw(X)]

S e

u

2:
L&

M=

Iao(x)\ 2cos(p(x)) = cos()

o
=)

[0096] Note from Equation (37) that (Wylat) is real-
valued. Key to the functioning of the algorithm 400, 500, the
motivation behind adding an ancilla qubit 410 (effectively
doubling the number of basis states) is precisely to make
(W lay real-valued.

[0097] From Equations (36) and (37), I'¥,) may be writ-
ten as follows (Equation (38)):

W, ) =2 cos(@)W, ) —lat) . (3%)
[0098] From Equations (16) and (33), the amplitude , (0,

x) of the basis state 10,x) in the superposition IV, ) may be
written as follows (Equation (39)):

ag(x) 39

NG

(0, x) = (0, x|¥;) = [2c08(9) - €47

[0099] Likewise, the amplitude d,(1,x) of the basis state
I1,x) may be written as follows (Equation (40)):

ao(x) “0)

NG)

(1, x) = (1, %) = —=[2co0s(§) - e

[0100] Equations (39) and (40) show that, after one itera-
tive step, the amplitudes of 10,x) and 11,x; have acquired
factors of [2 cos(8)-e*™] and [2 cos(8)-e*™], respec-
tively. Now, Equation (41) shows that, if cos(8) is positive,
the magnitude of the “amplitude amplification factor” after
one iteration is monotonically decreasing in cos(®):
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a0 1)

110, F o, x)Iz deos? (@) + 1 — 4cos(B)cos(@(x)).
0

lao(@, )P

[0101] Such preferential amplification of states with lower
values of cos() is precisely what the algorithm 400, 500 set
out to do.

[0102] Note that this monotonicity property relies on
y Woloy being real valued in Equation (36). If { Wolaty is
complex, with a phase &g {0,x}, then the amplification will
be monotonic in cos(¢—8), which does not meet the present
goal of the algorithm 400, 500. The case where ) ¥gloty is
not real-valued is explored further hereinbelow.

[0103] Identities to Track the Subsequent Iterations:
[0104] Equations (16), (17), (20), (23), (31), and (32) may
be used to derive the identities of Equations (42), which
capture the actions of the operators Sy, U, and Uqf on the
states IWO), laty, and 1By :

Sy, [¥0) = o), “2)
Syglay =2cos(D¥o) - o),
Syl B} = 2cos(0)[¥o) - |8,

Ugl¥o) = lerh,

Ul = \/_ Zao(x) 71¥7(”)|() x\+efzw(x.|1 R

Up) = 1%),
U1%o) = 15,
Ujler) = %),

1 v v
UlIBy=—= ) ao(®)[e” 0, x) + ¥¥D|1, x)].
¥ \/E ; [

[0105] A person of skill in the art will immediately rec-
ognize that the subspace spanned by the states [W,y, loly,
and IBy is almost stable under the action of Sy U and
U . Only the actions of U, on lety and If) may take the
state of the system out of th1s subspace. Continuing to refer
to FIGS. 4 and 5, the motivation behind alternating between
using U, and U(PJr during the odd iterations 402 and the even
iterations 404 is to keep the state of the system within the
subspace spanned by IW¥,), lay, and If) .

[0106] From the identities above, the expressions of Equa-
tions (43) may be written capturing the relevant actions of
the odd iteration operator 430, 432 denoted Sy, U, and the
even iteration operator 430, 434 denoted S, U J“

S, Ugl)=2 cos( (0)IW,) —la ),
Sy, UylB)=1¥o }
S Uy 1P0)=2 cos(8)1¥, ) -IB ),

S Uy )=, ) . (43)

[0107] Referring now to FIG. 6, and continuing to refer to
FIGS. 4 and 5, state diagram 600 illustrates how, from the
expressions of Equation (43), the odd iteration operator 430,
432 denoted Sy, U, may map any (first) state 610 in the
space spanned by I‘P and 1) to a (second) state 620 in
the space spanned by I‘PO) and la) . Conversely, the even
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iteration operator 430, 434 denoted Sy, U(PJr may map any
state 620 in the space spanned by I'¥,;) and lo) to a state
610 in the space spanned by |¥,) and 1) . Because the
algorithm 400, 500 begins with the system initialized in the
state I'F;) , the state of the system may oscillate between the
two subspaces 610, 620 during the odd and even iterations
402, 404.

[0108] State After k Iterations:

[0109] Using Equations (27) and (43), the state ¥, ) of
the two-register system after k>0 iterations may be written,
in matrix multiplication notation, as shown in Equation (44):

[|%>|a'>][2°°s(0) 1]’“, if ks odd, )

-1 0]]o0

%0 =
2cos(d) 1771
() e I

], if k is even

[0110] To simplify Equation (44), let the matrix M, be
defined as follows (Equation (45)):

_[2cos(d) 1 45)
Mg:[ o 0].
[0111] Substituting Equation (45) into Equation (44)

yields Equation (46), as follows:

T 46
['Em Mg[(l)], if k is odd, o)

" [';O;TMek[(l)]’ i kis even

where the superscript T denotes transposition. My may be
diagonalized as

- 47
e 0 1 7
M9=Se[ 0 o IS§ ,

and where the matrix S, and its inverse S,' may be given by

i [ 8 1 = 48)
Sp= — [e ¢ ] §1= ° |
2sin@[ -1 -1 1 e®

[0112] Now, Mek may be written as follows (Equation
(49)):

49
0 ]S;l. 49

[0113] From Equation (48) and Equation (49), it follows
that
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1 efikG 0 -1 (50)
M€k|:0:|:S9|: 0 eik@][ 1 ]
g -] 1 [sin((kﬂ)e]'
0 g9 |7 sin(@)| —sin(kd)

[0114] Plugging (50) back into (46) leads to the following
(Equation (51)):

(&2Y)

1
" Sin(e)[sin((kJr1)0)|1P0>—sin(k0)|a>], if k is odd,
=

ﬁ[sin ((k + 1)) |¥y) — sin (k0)|/5’>], if k is even.

[0115] Basis State Amplitudes after k Iterations:

[01i6] From Equations (16), (33), (34), and (51), the
amplitudes 4,(0,x) of the basis states 10,x) after k>0 itera-
tions may be written as follows (Equation (52)):

(52)
(0, x) =
ao—m[sin (k+1)f) - sin(k6)e¥H], if & is odd,
V2sin ()
0, x¥) = ao(x
«/Esfn m [sin ((k + 1)8) - sin (k@)e 7], if & is even.
[0117] Similarly, the amplitudes 4,(1.x) of the basis states

I1,x) may be written as follows (Equation (53)):

(53)
a1, ) =
2 in -+ 1)) -sin k)], iF K i odd
(L4t V2sin(9)
> ATE) =
«/; Zg)(e) [sin (¢k + 1)) = sin (k)] if  is even.

[0118] These expressions may be summarized, for be {0,
1}, as follows (Equation (54)):

(609
(b, x) =
ao—m[sin ((k+1)8) —sin (k@)e¥®], if k+5 is odd,
\2sin(9)
900 [ (ke + 1)) - sin ()], i k- b is even.
\2sin@)

[0119] Amplitudes After Ancilla Measurement. Note that
the magnitudes of the amplitudes of the states 10,x) and I1,x
y are equal; that is,

13,(0,0)1=1 (1,91, (53)

for all k>0 and xe {0, 1, ..., N-1}. Therefore, a measure-
ment 440 of the ancilla qubit in the first register 410 after K
iterations may yield a value of either 0 or 1 with equal
probability. Let I\ ,) be the normalized state of the second
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register 420 after performing K iterations, followed by a
measurement 440 of the ancilla qubit 410, which may yield
a value be {0,1}. Iz ,) may be written as follows (Equa-
tion (56)):

W1 (56)
[¥xp)= Zﬂk.b(x)lma

x=0

where a, ,(x) are the normalized amplitudes of the basis
states of the second register 420 (after performing K itera-
tions and the measurement 440 of the ancilla 410). a, ,(x)
may simply be given by Equation (57):

ax o=V (b,x). (57

[0120] Much of the definition hereinbelow holds a)
regardless of whether a measurement 440 is performed on
the ancilla qubit 410 after the K iterations, and b) regardless
of the value yielded by the ancilla measurement 440 (if
performed). The primary goal of measuring 440 the ancilla
410 is to make the two registers 410, 420 unentangled from
each other.

[0121] Basis State Probabilities After K Iterations:
[0122] Continuing to refer to FIGS. 4 and 5, let p.(x) be
the probability for a measurement of the second register
after K>0 iterations to yield x. This probability may be
written, in terms of the amplitudes in the “Basis State
Amplitudes After K Tterations” section hereinabove, as
follows (Equation (58)):

PrO=[18(0,0)PHE (1,017 ]=lag o017 =lay ()% (58)
[0123] This expression shows that the probability p.(x)
depends neither on whether the ancilla was measured, nor on
the result of the ancilla measurement (if performed). From

Equation (54), p(x) may be written as follows (Equation
(59)):

Pr(@) = {)Ozm [sin(k +1)8) —sin(KH)e"‘”(X‘|2
sin“ ()
- Oz(x) [sin? (K8) + sin®((K +1)8) — 2 sin (K 8) sin (K + 1)) cos ().
sin“(6)

[0124] A person of skill in the art will immediately rec-
ognize that the probability amplification factor p(x)/p,(x) is
monotonic in cos(p(x)) for all K=0. The following trigono-
metric identities (Equation (60)) help elucidate the K depen-
dence of this amplification factor:

sin*(Cy+sin?(C+D)=sin>(D)+2 sin(C)sin(C+D)cos(D),
2 sin(C)sin{C+D)=cos(D)—cos(2C+D). (60)

[0125] Setting C=K0 and D=0, these identities may be
used to rewrite Equation (59) as follows (Equation (61)):

Pr)=po(0{1-Axlcos(@(x))—cos(8)]}, 6D

where the K-dependent factor A is given by Equation (62):

1= 2sin (K@) sin (K + 1)) cos (§) — cos (2K + 1)) (62)
k= sin(9) h sin(9) '
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[0126] For notational convenience, the fact that A,
depends on 8 is not explicitly indicated. The result in
Equation (61) may be summarized as follows:

[0127] (1) Applying K iterations of the non-boolean
amplitude amplification algorithm changes the probability
of measuring x by a factor that is a linear function of
cos(@(x)). If the second register is initially in an equiprob-
able state (i.e., if py(x)=constant), then the probability p(x)
after X iterations is itself a linear function of cos(®(x)).
[0128] (2) If cos(0(x))=cos(B) for some X, the probability
of a measurement of the second register yielding that x is
unaffected by the algorithm.

[0129] (3) The slope of the linear dependence is —hg. If A,
is positive, the states with cos(@)<cos(0) are amplified.
Conversely, if A is negative, states with cos(9)>cos(8) are
amplified. The magnitude of A controls the degree to which
the preferential amplification has been performed.

[0130] From Equation (62), A4 is an oscillatory function of
K, centered around cos(8)/sin*(6) with an amplitude of
1/sin*(0) and a period of 7/0. Recalling from Equation (30)
that

-1 N-1 (63)
Zﬁo(ﬁ) 05 (¢(x)) = cos () = Zpo(ﬁ) cos (),
x=0 x=0

one can verify that for any K>0, the probabilities p(x) from
Equation (61) add up to 1.

[0131] From the definition of A in Equation (62), for all
K, Ak is bounded from above by A defined as follows
(Equation (64)):

optimal

cos () +1 1 (64)
sinf@) ~ 1-cos(8)

)LK =4 optimai =

59

[0132] The Ag=A,, i Case represents the maximal pref-
erential amplification of lower values of cos(¢) achievable
by the algorithm. Let p,,nq/(X) be the state probability
function corresponding to A=A From Equation (61),

optimal*

cos (¢(x)) — cos () (65)

Poprimai(X) = po(x)| 1 = 1 -cos (9)

[0133] Note that p,,,;,,,,,(x)=0 for inputs x with the highest
possible value of cos(@(x)), namely 1. In other words,
Poprima T€aches the limit set by the non-negativity of prob-
abilities, in the context of the non-boolean amplitude ampli-
fication algorithm 400, 500 described hereinabove.

[0134] Number of Iterations to Perform:
[0135] In the non-boolean amplitude amplification algo-
rithm 400, 500 described hereinabove, the number of itera-

tions K to perform is left unspecified. Armed with Equation
(62), this aspect of the algorithm 400, 500 will now be
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described in detail. Higher values of A, are advantageous to
preferentially amplify lower values of cos(®). Equation (62)
illustrates that A, may be monotonically increasing for K=0,
1, ... as long as O<(2K+1)8<r+6 or, equivalently, for

OsKslz%J, (66)

where | v] denotes the floor of v. A good approach is to stop
the algorithm 400, 500 just before the first iteration that, if
performed, would cause value of Ag to decrease (that is,
from its value after the previous iteration). This approach
leads to the choice K for the number of iterations to perform,
given by

15

[0136] The corresponding value of A, for K=K is given by
Equation (68):

(68)

Ag= ﬁw)[cos(ﬁ) - cos([zﬂ—gJ%) + 9)]

[0137] The choice K in Equation (67) for the number of
iterations offers an amplification iff ©>26>0 or, equivalently,
iff 0<cos(0)<1. At one of the extremes, namely 0=1/2, one
has Az=0. The other extreme, namely cos(8)=1, corresponds
to every state x with a non zero amplitude in the initial state
ly,) having cos(@(x))=1. There is no scope for preferential
amplification in this case.

[0138] Equation (68) illustrates that L, exactly equals
A primes defined in Equation (64) if ©/(20) is a half-integer. In
terms of 0, this condition may be written as follows (Equa-

tion (69)):

velZ, ©

|3

, ... (harmonic progression)} = Ap = Agptimat-

~ R

»

[0139] For generic values of 8, Equation (68) illustrates
that AR satisfies the following (Equation 70}):

Jcos(f)
sin? (@)

cos(@) + 1 (70)
sin’()

= /4 = Arcprimal =

[0140] This equation may be rewritten as follows (Equa-
tion (71)):

A, 1=tan*(8/DISA S it @an

optimall

using the following identity:

208(6) _ 2[0032(?/2] —sin’(6/2)] 1) a2)
cos(@) +1 2cos*(6/2) - 1+ 1

[0141] Equation (71) illustrates that for small 8, A, is
approximately equal to A, ¢ (8%) relative error.

optimal®
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[0142] Mean and Higher Moments of Cos(¢) after K
Iterations:

[0143] Let p,“ be the n-th raw moment of cos(g(x)) for
a random value of x sampled by measuring the second
register after K iterations.

N-1 (73)
K=Y preloos” (@)

x=0

[0144] Under the notation of Equation (73), pg"" is simply
cos(8). From Equation (61),u," may be written in terms of

the initial moments (K=0) as follows (Equation (74)):

-l )
WP =S polecs ()L - g [eos(e(x) — cos(@)]
x=0 .
= = At - P

[0145] In particular, let W, and G,” represent the expected
value and variance, respectively, of cos(@(x)) after K itera-
tions.

HKEHK(I ),

2 (D),
K =gl

[0146] Now, the result in Equation (74) for n=1 may be
written as follows (Equation (76)):

V. (75)

HaHo=x o™ (76)

[0147] For A,>0, Equation (76) captures the reduction in
the expected value of cos(¢(x)) resulting from K iterations
of the algorithm 400, 500.

[0148] Cumulative Distribution Function of Cos(@) after
K TIterations:

[0149] Let F,"%(y) be the probability that cos(@(x))<y for
an x sampled as per the probability distribution p,. F. is
the cumulative distribution function of cos(¢) for a mea-

surement after K iterations, and may be written as follows
(Equations (77) and (78)):

N-1 an
FE0) = ) ok @1jpeny = cos@@)]],
x=0
N1 (78)
L= F () = ) [pk)(L = Tpaly = costg(@)D],
x=0

where 1., is the Heaviside step function, which equals 0
when its argument is negative and 1 when its argument is
non-negative. Using the expression for p, in Equation (61),
these equations may be written as follows (Equations (79)
and (80)):

(79)
FE ) =
y-1
Fo ()L + Agpio) — Ak Z { po(x)cos(@(x)) L jo.00) [y — cOS(p(x))]},
=0
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-continued
(80)

1= FE () = A = F§O( + g po) —

N-1

A Y {poeos(@U)[L = Tguly - costgl)T])

x=0

[0150] Every x that provides a non-zero contribution to the
summation in Equation (79) satisfies cos(¢(x))<y. This fact
may be used to write Equation (81), as follows:

Aa20= F i (02Fo (A=Y 8D

[0151] Likewise, every x that provides a non-zero contri-
bution to the summation in Equation (80) satisfies cos(®(x))
>y. This fact may be used to write Equation (82), as follows:

Age20=2 1-F " ()<(1=Fo () (I+Ag (o). 82

[0152] The inequalities in Equations (81) and (82) may be
summarized as follows (Equation (83)):

Ag20=0F S (9)2F, " ()l max{ Fo *()uo=y)(1-

Fo™ " ON0-10)}: (83)
where the max function represents the maximum of its two
arguments. This equation provides a lower bound on the
probability that a measurement after K iterations yields a
state whose cos(®) value is no higher than y. Derivation of
stronger bounds (or even the exact expression) for F.°*(y)
may be possible if additional information is known about the
initial distribution of cos(®). For y<p,, the first argument of
the max function in Equation (83) will be active, and for
V2|lo, the second argument will be active.

[0153] For the A,<0 case, it can similarly be shown that

A €05 F o (F, 25y b mind Fooo* () gy (1=

Fo0)0—u0)}: (84
where the min function represents the minimum of its two
arguments.

[0154] Boolean Oracle Case:

[0155] As described in the “Number of Iterations to Per-
form” section hereinabove, the heuristic choice for the
number of iterations for the non-boolean amplitude ampli-
fication algorithm of the present invention (namely K=n/
(ZG)J) is different from, but analogous to, the result for
known boolean amplitude amplification algorithm of the
prior art (namely | 7/ (49a,)J). Consider the parameter 6 in the
boolean oracle case, say 8,__,. Let P;#7°? be the probability
for a measurement on the initial state hy,) to yield a
winning state. From Equation (30),

008(Bhoot) = [~ 1 x PE |+ [1x (1= PE™)] =1 - 2P ®5)

= in}(fho0/2) = P (86)

[0156] Thus, in the boolean oracle case, sin*(8/2) reduces
to the initial probability of “success” (that is, measuring a
winning state), which is captured by sin*(8,) in known
boolean amplitude amplification algorithm(s). The param-
eter 6 used herein reduces to the parameter 28, used in
known boolean amplitude amplification algorithm(s), and
Ln/(26)] reduces to [ m/46,) .

[0157] In this way, the results of the “Analysis of the
Non-Boolean Amplitude Amplification Algorithm” section
hereinabove in general, and the “Number of Iterations to
perform” section hereinabove in particular, may be seen as
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generalizations of the corresponding results in known bool-
ean amplitude amplification algorithm(s) as described here-
inabove.

[0158] Alternative Formulation of the Algorithm:

[0159] Referring again to FIGS. 4 and 3, in the formula-
tion of the non-boolean amplitude amplification algorithm
400, 500 of the present invention, an ancilla qubit (first
register) 410 may be included for the purpose of making the
quantity ( WolU,IWo)=(Wolory real valued. If, in a particu-
lar use case, it is guaranteed that (YglUglyy) will be
real-valued (or have a negligible imaginary part, for
example, and without limitation, by replacing the function
O(x) with ¢'(x)=r(x)@(x), wherer: {0, 1, ... N=1}—>{-1,+1}
is a random function independent of ©(x), with mean 0 (for
x sampled by measuring Iy, ) ) even without introducing the
ancilla 410, then the algorithm 400, 500 described above
may be used without the ancilla 410: that is, may alternate
between applying operator 430, 432 denoted S,, U,, during
the odd iterations and applying operator 430, 434 denoted
SWO U(PT during the even iterations. In other words, the
properties and structure of two-register system are not
exploited in the algorithm description, beyond making
(PolUyl¥y) real-valued.

[0160] However, Equations (33) and (34) illustrate that the
states 1at) =U,I%¥y) and IB) =U¢T|‘I‘O) are related by

1B} =[X®0la) la ) =[XSNIB) , (87)

where X is the bit-flip or the Pauli-X operator 340. This
relation may be exploited to avoid having two separate
cases—k being odd and even—in the final expression for
¥,y in Equation (51). The expression for both cases may be
made the same by acting the Pauli-X gate 340 on the ancilla
410, once at the end, if the total number of iterations is even.

[0161] More interestingly, the relationship between lot
y and 1By may be used to avoid having two different
operations in the first place, for the odd and even iterations.
This leads to the following alternative formulation of the
non-boolean amplitude amplification algorithm: During
each iteration, odd or even, act the same operator Q
defined by

0, =S UglX®1). (88)

iter

[0162] This alternative formulation is depicted as a circuit
700 in FIG. 7 and as a pseudocode 800 in FIG. 8.

[0163] From Equations (43) and (87), the action of Q,,, on
and oty may be derived as follows (Equations (89) and

©0)):

Oirer|¥o) = Suy Up¥o) = 2eos(@)1¥o) —1er), GR))

Oirerl@) = Sy Up| B) =[¥p). ©0)

[0164] Let ¥, “"y be the state of the two-register system
after k iterations under this alternative formulation 700, 800
(before any measurement of the ancilla 410), as follows
(Equation (91)):

=0, %0 ) - on
[0165] Using similar manipulations as those leading to

Equation (51) hereinabove, I¥,*") may be expressed, for all
k>0, as follows (Equation (92)):
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S . 92
- [sin((k + DO¥o) —sin(k)]ar)].
sin(f)

‘I‘Z”) —

[0166] Note that this expression for IW,**) is almost
identical to the expression for W, in Equation (51), but
without two separate cases for the odd and even values of k.
Much of the analysis of the original formulation of the
non-boolean amplitude amplification algorithm 400, 500
described hereinabove holds for the alternative formulation
700, 800 described hereinabove as well, including the
expressions for the state probabilities pr(x), mean ., raw
moments A", and the cumulative distribution function
|

[0167] In addition to simplifying the amplification algo-
rithm (by using the same operation for every iteration), the
Q,,., operator used in algorithms 700, 800 allows for a
clearer presentation of the quantum mean estimation algo-
rithm, as described hereinbelow.

[0168] Quantum Mean Estimation Algorithm:

[0169] A quantum mean estimation algorithm according to
certain embodiments of the present invention may operate to
estimate the expected value of e“™ for x sampled by
measuring a given superposition state Iy,). Let EWO[ei‘P]
denote this expected value, as follows (Equation (93)):

N-1 93)
Eyy %] = WolUglro) = lag (e,

x=0

[0170] This equation may be written as follows (Equation
(%94)):

E,,[e"1=Re[E,, [} +i Im[E,, []], (94)

where the real and imaginary parts are given by Equations
(95) and (96), respectively, as follows:

oW 95)
Re[Eyy [e¥]] = > lag()Peostp(),
x=0
N-1 96)

ao(x)lzsin(z,a(x)).

[ Egy [¢]] =

b
I
>

[0171] The mean estimation may therefore be performed
in two parts: one for estimating the mean of cos(®), and the
other for estimating the mean of sin(@). Note that the
expectation of cos(@) under the state Iy,) is precisely
cos(0) defined in Equation (30).

[0172] Estimating the Mean of cos(¢):

[0173] The connection shown in the “Boolean Oracle
Case” section hereinabove between the parameter 6 and the
parameter 8, serves as the intuition behind the quantum
mean estimation algorithm of the present invention. In the
known boolean amplitude estimation algorithm described
hereinabove, the parameter 0, is estimated using QPE (Note:
The estimation of 0, is only (needed to be) performed up to
a two-fold ambiguity of {0,,m—0,}). The estimate for 0, is
then turned into an estimate for the initial winning prob-
ability. The non-boolean quantum mean estimation algo-
rithm of the present invention may operate to estimate the
parameter 6 defined in Equation (30) using QPE (Note: The
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estimation of 0 is only (needed to be) performed up to a two
fold ambiguity of {8,2n—68}). The estimate for 8 may then be
translated into an estimate for the initial expected value of
cos(®(x)), namely cos(6).

[0174] Toward the end of actualizing the abovementioned
intuition into a working algorithm, a key observation is that
¥y may be written as follows (Equation (97)):

I} —li7-» o7

where I1,) and In_) are given by Equation (98):

2y ) _ 98)
oy = Sl k)
iV2 sin(9)
[0175] Note: The forms of the eigenstates 1,y and I1_

y in Equation (98) may be determined from the form of the
matrix Sy in Equation (48). These forms may also be
determined from Equation (92) by rewriting the sin func-
tions in terms of complex exponential functions.

[0176] The expressions for In,) and In_) in Equation
(98) may be used to verify Equation (97). Crucially, Im,
y and IM_) are unit normalized eigenstates of the unitary

operator Q,,,, with eigenvalues e and €™, respectively.
QirerMa ) zfﬂe”b) ; 99
{nan, ) =1, (100)

[0177] The properties of In,) and In_) in Equation (99)
and Equation (100) may be verified using Equation (89),
Equation (90), and Equation (98). The observations in
Equation (97) and Equation (99) lead to the following
algorithm for estimating cos(6):

[0178] (1) Perform the QPE algorithm with a) the two-
register operator Q,,,, serving the role of the unitary operator
under consideration, and b) the superposition state I'¥,) in
place of the eigenstate required by the QPE algorithm as
input. Let the output of this step, appropriately scaled to be
an estimate of the phase angle in the range [0,21). be ®.
[0179] (2) Return cos(ﬁ)) as the estimate for cos(0) (i.e.,
the real part of E%[ei‘P]). Note: If the circuit implementation
of Q,,,, 1s wrong by an overall (state independent) phase §,,,.,
then the estimate for cos(6) is cos(0—9,,,). This is important,
for example, if the operation [210,0y ( 0,01-1] is only imple-
mented up to a factor of —1 (i.e., with ¢,,,=%). Note that the
final state probabilities under the non-boolean amplitude
amplification algorithm are wnaffected by such an overall
phase error.

[0180] Proof of correctness of the algorithm: I'¥,) is a
superposition of the eigenstates Im,y and In_) of the uni-
tary operator Q,,,. This implies that ® may either be an
estimate for the phase angle of In,), namely 6, or an
estimate for the phase angle of In_), namely 2n—-0. (Note:
If 9=0, the phase angle being estimated is 0 for both In,
y and In_) . For 820, ® will be an estimate for either 6 or
27-0 with equal probability. Since 0 lies in [0,%] and 270
lies in [m,27], the output ® can be converted into an estimate
for 0 alone (although doing so is not necessary)). Since,
cos(2n—0)=cos(8), it follows that cos((l)) is an estimate for
cos(6).
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[0181] Estimating the Mean of e’

[0182] The algorithm for estimating the expected value of
cos(®) in the section hereinabove may be re-purposed to
estimate the expected value of sin(¢@) by using the fact that

sin{@)=cos(Q—7/2). (102

[0183] In other words, the i 1mag1na1y part of E,, A ] is the
real part of E,, [¢"¢™*]. By using the oracle U(P_T[,q (for the
function (p—n',/2) instead of U, in the mean estimation
algorithm of the preceding sectlon, the imaginary part of
Ewo[ei‘P] may also be estimated. This completes the estima-
tion of E,, [e"].

[0184] For concreteness, U,, ., may be explicitly written
as

Upmz=¢ ™10} {0IQU+e™11} ( 11QU,". (102)

[0185] Referring now to FIG. 9, exemplary circuit 900
illustrates implementation of U, ., using the oracle 932
denoted U, the bit-flip operator 940 denoted X, and the
phase-shift operator R, (shown as elements 950, 952).
[0186] Note that the algorithm does not use the knowledge
that {10}, , IN=1} } is an eigenbasis of U(P. Therefore,
this algorithm may be used to estimate ( yolUly,) for any
unitary operator U.

[0187] Quantum Speedup:

[0188] The speedup offered by the quantum mean estima-
tion algorithm 900 over classical methods will now be
discussed in detail, in the context of estimating the mean of
cos(@) alone. This discussion may be extended in a straight-
forward way to estimation of Ewo[ei‘P].

[0189] Classical Approaches to Estimating the Mean: For
an arbitrary function ¢ and a known sampling distribution
Po(x) for the inputs x, one classical approach to finding the
mean of cos(@(x)) is to sequentially query the value of o(x)
for all the inputs and use the query results to compute the
mean. Let the permutation (xX,, X, . . ., X,.;) of the inputs
(0,1,...,N-1) be the order in which the inputs are queried.
The range of allowed values of cos(8), based only on results
for the first q inputs, is given by the following (Equation
(103)):

g1 N-1 (103)

Zpo(x) o8 (P(x;)) — Zpo(x) <

7=0 Jj=q

-1

> pol)os (¢lx ) + ZPJ(JC)

J=0 Jj=q

cos () =

[0190] These bounds are derived by setting the values of
cos(@) for all the unqueried inputs to their highest and lowest
possible values, namely +1 and —1. The range of allowed
values of cos(B) shrinks as more and more inputs are
queried. In particular, if po(x) is equal for all the inputs x, the
width of the allowed range (based on g queries) is given by
2(N—q)/N. This strategy may take ¢ (N) queries before the
width of the allowed range reduces to even, say, 1. Thus, this
strategy will not be feasible for large values of N.

[0191] An alternative classical approach is to probabilis-
tically estimate the expected value as follows:

[0192] (1) Independently sample g random inputs (X, . .
- X} as per the distribution p;.

[0193] (2) Return the sample mean of cos(¢) over the
random inputs as an estimate for cos(6).
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[0194] Under this approach, the standard deviation of the
estimate scales as ~00/\/ g, where G, is the standard deviation
of cos(¢) under the distribution py,.

[0195] Precision Vs Number of Queries for the Quantum
Algorithm: Note that one call to the operator Q,,., corre-
sponds to ¢ (1) calls to Ag and U,, (and their inverses). Let
q be the number of times the (controlled) Q,,., operation is
performed during the QPE subroutine. As q increases, the
uncertainty on the estimate for the phase-angle 6 (up to a
two-fold ambiguity) falls at the rate of ¢(1/q). Conse-
quently, the uncertainty on cos(8) also falls at the rate of
¢ (1/g). This represents a quadratic speedup over the clas-
sical, probabilistic approach, under which the error falls as
¢ (INQ).

[0196] Note that the variance of the estimate for cos(8) is
independent of a) the size of input space N, and b) the
variance 6,,” of cos(¢(x)) under the distribution po(x). It only
depends on the true value of cos(8) and the number of
queries q performed during the QPE subroutine.

[0197] Demonstrating the Algorithms Using a Toy
Example

[0198] Referring again to FIGS. 4, 5, and 9, the non-
boolean amplitude amplification algorithm 400, 500 and the
mean estimation algorithm 900 will both be demonstrated
using a toy example. Let the input to the oracle U,, (i., the
second register 420), contain 8 qubits. This leads to 2°=256

basis input states, namely 10y, . . ., 1255). Let the toy
function @(x) be
xrr (104)
ox) = 551 forx=0,1,...,255

[0199] The largest phase-shift applied by the correspond-
ing oracle 432 denoted U, on any basis state is /4, for the
state 1255 . Since, cos(¢(x)) is monotonically decreasing in
X, the goal of the amplitude amplification algorithm 400, 500
is to amplify the probabilities of higher values of x.
[0200] Letthe initial state, from which the amplification is
performed, be the uniform superposition state Is) .

255 (103)

o) = Is) = Z| )

[0201] Such simple forms for the oracle function and the
initial state allow for a good demonstration of the algorithms
of the present invention.

[0202] For this toy example, from Equation (30), cos(8)
and O are given by

128 - (106)
)= — — =]~ 0.9001
cos (0) 256; 005(255 4) s

# = 0.4507.

[0203] Referring now to FIG. 10, graph 1000 shows the
value 1010 of A, from Equation (62), for the first few of a
range 1020 of values of K (more specifically, for K=0, 1, .

, 14). The dots 1030 (only a subset labeled, for clarity)
correspond to the different integer values 1020 of K. The
black solid curve 1040 depicts the sinusoidal dependence of
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the value 1010 of A, on the range 1040 of K. The dotted
lines 1050 indicate that the value 1010 of A oscillates
around a reference 1060 of cos(0)/sin*(8) with an amplitude
1070 of 1/sin*(8) and a period 1080 of 7/0 (in K values). The
heuristic choice for the total number of iterations K=[#/(26)]
is 3 for this example.

[0204] Amplitude Amplification:

[0205] Continuing with the toy example, and referring
now to chart 1100 of FIG. 11, the quantum circuit for the
non-boolean amplitude amplification algorithm 400, 500
was implemented in a quantum computing framework for
three different values of the total number of iterations K,
namely K=1, 2, and 3. The solid histograms 1130, 1140,
1150 show the observed measurement frequencies 1110 of
the different values 1120 of xe{0, 1 . . ., 255} after
performing the non-boolean amplitude amplification algo-
rithm 400, 500. The solid histograms 1130, 1140, 1150
correspond to the total number of iterations K being 1, 2, and
3, respectively. In each case, the observed frequencies are
based on simulating (and measuring) the circuit for the
algorithm 10° times (i.e., 10° shots). The dashed curves
1132, 1142, 1152, in good agreement (almost coincident)
with their corresponding solid histograms 1130, 1140, 1150,
respectively, show the predictions pg(x) (for the measure-
ment frequencies) computed using Equation (61). While
Px{x) may be technically defined only for the integer values
of x, in FIG. 11 the dashed curves 1132, 1142, 1152 are
interpolated for non-integer values of x using Equation (61).
[0206] As can be seen from FIG. 11, in each case, the
algorithm 400, 500 preferentially amplifies lower values of
cos(@(x)) or, equivalently, higher values of x. This result is
expected from the fact that A, >0 for all three values of K.
Furthermore, as K increases from 0 to X=3, the preferential
amplification grows stronger. Note that the probabilities of
the x-s for which cos (P(x))=cos(0) are left approximately
unchanged by the algorithm, as indicated by the dotted
crosshair 1160.

[0207] Mean Estimation:

[0208] Continuing with the toy example, and referring
now to graphs 1200, 1250 of FIG. 12, results of demon-
strating the quantum circuit for the non-boolean mean
estimation algorithm 900 will now be described in detail.
Only the estimation of cos(0) (i.e., the real part of E%[ei‘P])
is demonstrated herein. The imaginary part may also be
estimated using the same technique, as described in “Esti-
mating the Mean of €**” hereinabove.

[0209] Let M be the number of qubits used in the QPE
subroutine of the mean estimation algorithm 900, to contain
the phase information. This corresponds to performing the
(controlled) Q,,, operation 2”1 times during the QPE
subroutine. Note that the estimated phase & may only take
the following discrete values:

&)e{%“e{o,mﬂ’”—l}}. aon
[0210] In this way, the value of M controls the precision
of the estimated phase and, by extension, the precision of the
estimate for cos(0); the higher the value of M, the higher the
precision.

[0211] For the demonstration, two different quantum cir-
cuits were implemented, again using a quantum computing
framework, for the mean estimation algorithm 900; one with
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M=4 and the other with M=8. Each circuit was simulated
(and measured) 10° times, to get a sample of ® values all in
the range [0,2).

[0212] The observed frequencies 1210 (scaled by 1/bin-
width) of the different values 1220 of @ are shown as
histograms on a linear scale in top graph 1200, and on a
logarithmic scale in the bottom graph 1250. Here the bin-
width of the histograms is given by 2m/2", which is the
difference between neighboring allowed values of ®.
[0213] The dashed histogram 1230 and solid histogram
1240 correspond to the circuits with 4 and 8 phase mea-
surement qubits, respectively. The exact values of 6 and
270 for the toy example are indicated with vertical dotted
lines 1232, 1242, respectively. In both cases (M=4 and
M=3). the observed frequencies peak near the exact values
of 8 and 2n—0, demonstrating that @ is a good estimate for
them, up to a two-fold ambiguity. (Note: The upward trends
near the left (—1) and right (+1) edges of the plots in are
artifacts caused by the Jacobian determinant for the map
from o to Cos(a))). Furthermore, as expected, using more
qubits for estimating the phase leads to a more precise
estimate.

[0214] Ancilla-Free Versions of the Algorithms:

[0215] Both algorithms introduced this in this paper so far,
namely (1) the amplitude algorithm of FIGS. 4 and 5 and its
alternative formulation in FIG. 8, and (2) the mean estima-
tion algorithm of FIG. 9, use an ancilla qubit to make the
quantity ( ¥,lU,Wq) real valued. This is important for
achieving the respective goals of the algorithms. However,
the same algorithms may be performed without the ancilla,
albeit to achieve different goals, which may be relevant in
some use cases.

[0216] Ancilla-Free Non-Boolean Amplitude Amplifica-
tion:

[0217] The ancilla-free version of the amplitude amplifi-
cation algorithm is almost identical to the algorithm intro-
duced hereinabove at FIGS. 4 and 5. The only difference is
that, in the ancilla-free version, the single-register operators
Sw U, and Uqf are used in place of the two-register
operators S\I,O, U(p, and Ucer’ respectively. For concreteness,
the ancilla-free algorithm may proceed as follows:

[0218] (1) Initialize a system in the state Iy, ) .

[0219] (2) Act the operation Sy.Ue during the odd itera-
tions and S%U(PJr during the even iterations.

[0220] Analogous to the two-register states It} and I
y in Equations (31) and (32), let the single-register states o/
y and IB'y be defined as

N1 (108)
2’y = Uglie) = ) @ Pag(ok),

x=0

N-1
1B =U i) = ) e Wayx).

x=0

[0221] Analogous to 6 defined in Equation (30), let 8'e
[0,m/2] and d¢ [0.2m) be implicitly defined by

Nl (109)
cos (8)e® = (Wolay = Zmo(x)few‘k)_

x=0
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[0222] Variables cos(6") and & are the magnitude and
phase, respectively, of the initial (i.e., x sampled from lyg) )
expected value of . An important difference between @'
and 0 is that cos(8") is restricted to be non-negative, unlike
cos(B), which may be positive, negative, or zero.

[0223] Note that cos(8') may be written as

N-1 (110
cos ()= Y lag()e¥"®,

x=0

where @'(x) is given by
O'(x)=p(x)-3. (111

[0224] Acting the oracle U, for the function ¢ may be
thought of as acting the oracle U, for the function ¢,
followed by performing a global, state independent phase-
shift of 6. Furthermore, from Equation (120), it can be seen
that ( WylU,lW,) is real-valued. This observation may be
used to re-purpose the analysis in the “Analysis of the
Non-Boolean Amplitude Amplification Algorithm” section
hereinabove for the ancilla-free version; the corresponding
results are presented here without explicit proofs.

[0225] Let Iy,) be the state of the system of the after k>0
iterations of the ancilla-free algorithm. Analogous to Equa-
tion (51), hy',) may be written as

s [sin ((k + 1)E)uro) - sin (k8 )~ |a” )
S (@) sin (( )9)lgro? — sin (k6" )e ™ |of

(112)
, ifkisodd,

) =

1 . , s i e
m[sm((lwrl)ﬁ W) — sin (k8 )e |ﬁ'>], if kis even.

[0226] let p'(x) be the probability of measuring the
system in state x after K iterations. Analogous to Equation
(61), p'k(x) can be written as follows (Equation (113)):

P'r0)=po0){1-N clcos(@(x)-8)—cos(8]}, (113)

where the A'g, the ancilla-free analogue of A, is given by

- 2sin (K@) sin (K +1)§)  cos (67) = cos (2K + 1)) (114)

K sin’(@) sin’(@")

[0227] In this case, the probability amplification factor
P'k/Po is linear in cos(@—9).
[0228] Ancilla-Free Mean Estimation:

[0229] The ancilla-free mean estimation algorithm
described in this subsection may estimate the magnitude of
(WolUly,) for a given unitary operator U. Hereinbelow the
algorithm is presented in terms of the oracle U, and the goal
of the algorithm is to estimate cos(8") from Equation (109)
(i.e., the magnitude of EWO[ei‘P]E( YolUglwg) )-

[0230] Let the unitary operator Q,,.,,., be defined as
follows (Equation 115)):

Qervenoad=SuyUsSuyUs'- (115)

[0231] Its action corresponds to performing the (ancilla-
free) even-iteration operation once, followed by the odd-
iteration operation. Analogous to Equations (97) and (98),
the state ly,) can be written as
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IANES) s)

[¥ho) 7

where I, ) and Im"_) are given by

eii€/|w0> —e”ﬂo/) (117
l) = ——=———

iy2 sin(@)

[0232] In',) and IN"_) are unit-normalized eigenstates of
2i0 —2i0

Q. onoaq With eigenvalues e, and e™, respectively.
Qovnaiallls) = €211, ), (118)
) = 1. (119)

[0233] The observations in Equations (118) and (119) lead
to the following algorithm for estimating cos(8'):

[0234] (1) Perform the QPE algorithm with Q.4 Serv-
ing the role of the unitary operator under consideration, and
the superposition state 1y,) in place of the eigenstate
required by the QPE algorithm as input. Let the output of
this step, appropriately scaled to be an estimate of the phase
angle in the range [0,2m), be o.

[0235] (2) Return Icos((l)/2)| as the estimate for cos(0").
[0236] In this version of the algorithm, o will be an
estimate for either 208 or 2n—26. (Note: If 8'=0, the phase
angle being estimated is 0 for both In', y and In'_y .} So, o2
will be an estimate for either 6' or ©—6'. Since, a) cos(n—0")
=—c0s(0'), and b) cos(8') is a non-negative number, it follows
that Icos(d)/Z)I is an estimate for cos(9).

[0237] Potential advantageous applications of the algo-
rithms of the present invention may include the following:
[0238] Approximate Optimization:

[0239] A straightforward application of the non-boolean
amplitude amplification algorithm of the present invention is
in the optimization of objective functions defined over a
discrete input space. The objective function to be optimized
needs to be mapped onto the function @ of the oracle U,
with the basis states of the oracle corresponding to the
different discrete inputs of the objective function. After
performing an appropriate number of iterations of the algo-
rithm, measuring the state of the system will yield “good”
states with amplified probabilities. Multiple repetitions of
the algorithm (multiple shots) may be performed to proba-
bilistically improve the quality of the optimization.

[0240] Note that the technique is not guaranteed to yield
the true optimal input, and the performance of the technique
will depend crucially on factors like a) the map from the
objective function to the oracle function @, b) the number of
iterations K, c) the initial superposition hy,), and, in par-
ticular, d) the initial distribution of @ under the superposition
o) . This approach joins known quantum optimization
techniques.

[0241] Simulating Probability Distributions:

[0242] The amplitude amplification algorithm may be
useful for simulating certain probability distributions. By
choosing the initial state Iy, ) , oracle U, and the number of
iterations K, one can control the final sampling probabilities
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Px(x) of the basis states; the exact expression for p(x) in
terms of these factors is given in Equation (61).

[0243] Estimating the Overlap Between Two States:
[0244] Let lyy and 10y be two different states produced
by acting the unitary operators A and B, respectively, on the
state 10 .

ly ) =410) )0 ) =BIO} . (120)

[0245] Estimating the overlap | yl) | between the two
states is an important task with several applications, includ-
ing in Quantum Machine Leamning (QML). Several algo-
rithms, including the Swap test, can be used for estimating
this overlap. For the Swap test, the uncertainty in the
estimated value of | (1o | falls as ¢ (1/v/q) in the number
of queries ¢ to the unitaries A and B (used to the create the
states lyy and 1) ).

[0246] On the other hand, the mean estimation algorithm
of the present invention also be used to estimate (yl0) by
noting that

(o) =( 0IATBIO ) . 1zn
[0247] So, by setting

U=ATB, (122)

Iy, ) =10}, (123)

values {Wl0) may be estimated as { W,lUly,) using the
mean estimation algorithm of FIG. 9. If one is only inter-
ested in the magnitude of (yl¢), the ancilla-free version of
the mean estimation algorithm described hereinabove will
also suffice. Since, for the mean estimation algorithm, the
uncertainty of the estimate falls as ¢(1/q) in the number of
queries q to the unitaries A and B (or their inverses), this
approach offers a quadratic speedup over the Swap test.
Furthermore, the } (1/q) scaling of the error achieved by this
approach matches the performance of the known optimal
quantum algorithm for the overlap-estimation task.

[0248] Meta-Oracles to Evaluate the Superposition Ny
y and Unitary U:

[0249] Recall from Equations (97) and (98) that

) — e ) (124)

5

Qir|¥o) =

where cos(8) is the real part of ( ylU, Iy, . Note that the
parameter 0 depends on the superposition Ny,) and the
unitary U,. The action of Q,,, on I'¥y) is to apply a
phase-shift of 8 on the projection along In,) and a phase-
shift of —0 on the projection along I1_) . This property may
be used to create a meta-oracle which evaluates the super-
position I'¥,) and/or the unitary U, (or a generic unitary U)
based on the corresponding value of 8. More specifically, if
the circuit Ay for producing W) and/or the circuit for U are
additionally parameterized using “control” quantum regis-
ters (provided as inputs to the circuits), then a meta-oracle
may be created using Equation (24) to evaluate the states of
the control registers. Such meta-oracles may be used with
quantum optimization algorithms, including the non-bool-
ean amplitude amplification algorithm of the present inven-
tion, to find “good” values (or states) of the control registers.
[0250] Variational quantum circuits (i.e., quantum circuits
parameterized by (classical) free parameters) have several
applications, including in QML. Likewise, quantum circuits
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parameterized by quantum registers may also have applica-
tions (e.g., in QML and quantum statistical inference).
[0251] Some of the illustrative aspects of the present
invention may be advantageous in solving the problems
herein described and other problems not discussed which are
discoverable by a skilled artisan.
[0252] While the above description contains much speci-
ficity, these should not be construed as limitations on the
scope of any embodiment, but as exemplifications of the
presented embodiments thereof. Many other ramifications
and variations are possible within the teachings of the
various embodiments. While the invention has been
described with reference to exemplary embodiments, it will
be understood by those skilled in the art that various changes
may be made and equivalents may be substituted for ele-
ments thereof without departing from the scope of the
invention. In addition, many modifications may be made to
adapt a particular situation or material to the teachings of the
invention without departing from the essential scope thereof.
Therefore, it is intended that the invention not be limited to
the particular embodiment disclosed as the best or only
mode contemplated for carrying out this invention, but that
the invention will include all embodiments falling within the
scope of the appended claims. Also, in the drawings and the
description, there have been disclosed exemplary embodi-
ments of the invention and, although specific terms may
have been employed, they are unless otherwise stated used
in a generic and descriptive sense only and not for purposes
of limitation, the scope of the invention therefore not being
so limited. Moreover, the use of the terms first, second, etc.
do not denote any order or importance, but rather the terms
first, second, etc. are used to distinguish one element from
another. Furthermore, the use of the terms a, an, etc. do not
denote a limitation of quantity, but rather denote the pres-
ence of at least one of the referenced item.
[0253] Thus, the scope of the invention should be deter-
mined by the appended claims and their legal equivalents,
and not by the examples given.
That which is claimed is:
1. A method of performing quantum calculation on an
oracle U, for a non-boolean function @, comprising:
initializing an ancilla qubit in a +) state and an input
qubit in a Iy, state of a plurality of eigenstates Ix) to
define a two-register state IW¥,) =H,yq) ;
for each of a plurality K of iterations
receiving, using the input qubit, a respective one of the
plurality of eigenstates 1x) defining an input basis
state,
for odd iterations, acting on the input basis state using
a selective phase-flip unitary operator circuit Sy, and
a controlled unitary operator circuit Uy, and
for even iterations, acting on the input basis state using
the selective phase-flip unitary operator circuit Sy,
and a controlled inverse unitary operator circuit U(PT.
2. The method according to claim 1, further comprising
measuring, after the plurality K of iterations, the ancilla
qubit in a 0/1 basis.
3. The method according to claim 1, wherein the selective
phase-flip unitary operator circuit Sy, further comprises:
a Hadamard transform H,
a unitary operator A,
a unitary operator I, and
an inverse unitary operator A,";
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wherein the selective phase-flip unitary operator Sy,
[HQA,I[210,0) ¢ 0,01-T[HRA,™.

4. The method according to claim 1, wherein the acting on
the input basis state using the selective phase-flip unitary
operator circuit Sy, and the controlled unitary operator
circuit U, further compnses for the ancilla qubit in a state
10y, actlng on the input qubit as U,l0x) =" @10x),
U,llx) =771 x

5 The method according to claim 1, wherein the acting on
the input basis state using the selective phase-flip unitary
operator circuit Sy, and the controlled inverse unitary opera-
tor circuit U, T further comprises, for the ancilla qubit in a
state Il actlng on the input qubit as U TIO Xy =)0 ,x
b Uy Il Xy =e |1 xy,

6. The method according to claim 1, further comprising:

receiving, using the input qubit, the 1} state defining an

input random state;

acting on the input random state using a controlled

estimation unitary operator circuit Uy, .

7. The method according to claim 6, wherein the con-
trolled estimation unitary operator circuit Ug,_., further
comprises:

the controlled unitary operator circuit U,

at least one bit-flip operator X, and

at least one phase-shift operator R;

wherein the controlled estimation unitary operator circuit

U= 7210y (0IQU +¢™ 211 ( 1IQU,.

8. A quantum computing device for performing quantum
calculation on an oracle U, for a non-boolean function ¢,
comprising:

a two-register quantum system comprising

an ancilla qubit, and
an input qubit; and
a non-boolean quantum oracle comprising
a selective phase-flip unitary operator circuit S, ,
a controlled unitary operator circuit U, and
a controlled inverse unitary operator c1rcu1t U
wherein the quantum computing device is conﬁgured to
initialize the ancilla qubit in a |+) state and the input
qubit in a h},) state of a plurality of eigenstates Ix
y to define a two-register state 1W,) =l+,y) ;
for each of a plurality K of iterations
receive, using the input qubit, a respective one of the
plurality of eigenstates Ix) defining an input basis
state,
for odd iterations of the plurality K of iterations, act
on the input basis state using the selective phase-
flip unitary opetator circuit Sy, and the controlled
unitary operator circuit U, and
for even iterations of the plurality K of iterations, act
on the input basis state using the selective phase-
ﬂlp unitary operator circuit Sy, and the controlled
inverse unitary operator c1rcu1t Uqf

9. The quantum computing device according to claim 8,
further configured to measure, after the plurality K of
iterations, the ancilla qubit in a 0/1 basis.

10. The quantum computing device according to claim 8,
wherein the selective phase-flip unitary operator circuit Sy,
further comprises:

a Hadamard transform H,

a unitary operator A,

a unitary operator I, and

an inverse unitary operator A,";
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wherein the selective phase-flip umtary operator Sy,
[HQA,][210,0) ¢ 0,0/-T][HRA,.

11. The quantum computing device according to claim 8,
further configured, for the ancilla qubit in a state 10} , to act
on the input qubit as U,l0.x) =" *®@I0,x), U, I1,x) =™
@®I1Lxy .

12. The quantum computing device according to claim 8,
further configured, for the ancilla qubit in a state 1 , to act
on the input qubit as U, TIOX) e OI0xy UCPTH,X) =e~
ch(x)|1 X}

13. The quantum computing device according to claim 8,
further comprising a controlled estimation unitary operator
circuit Uy_,, », and configured to:

receive, using the input qubit, the I},

input random state; and

act on the input random state using the controlled esti-

mation unitary operator circuit Ug_».

14. The quantum computing device according to claim 13,
wherein the controlled estimation unitary operator circuit
Uy further comprises:

the controlled unitary operator circuit U,

at least one bit-flip operator X, and

at least one phase-shift operator R;

wherein the controlled estimation unitary operator circuit

U= ™10y (0I®U +e™2I1) ( 1IQU,T

15. A system of quantum circuits for implementing an
oracle U q for a non-boolean function ¢, the system con-
figured to:

initialize an ancilla qubitina [+) state and an input qubit

inaly,) stateofa plurality of eigenstates Ix) 1o define

a two-register state |W,) =l+,9,) ;

for each of a plurality K of iterations

receive, using the input qubit, a respective one of the
plurality of eigenstates Ix) defining an input basis
state,

for odd iterations of the plurality K of iterations, act on
the input basis state using a selective phase-flip
unitary operator circuit Sy, and a controlled unitary
operator circuit U, and

for even iterations of the plurality K of iterations, act on
the input basis state using the selective phase-flip
unitary operator circuit Sy, and a controlled inverse
unitary operator circuit U,

16. The system according to claim 15, further configured
to measure, after the plurality K of iterations, the ancilla
qubit in a 0/1 basis.

17. The system according to claim 15, wherein the selec-
tive phase-flip unitary operator circuit Sy, further comprises:

a Hadamard transform H,

a unitary operator A,

a unitary operator I, and

an inverse unitary operator A,";

wherein the selective phase-flip unitary operator Sy,

[H®A,][2/0,0} ¢ 0,01-1][HRA,.

18. The system according to claim 15, further configured,
for the ancilla qubit in a state 10) , to act on the input qubit
as U l0,x) =e"*™10,x) , U I1,x) =e7 1 xy .

19 The system according to claim 15, further configured,
for the ancilla qubit in a state 11} , to act on the input qubit
as U, 10.x)y =e¥*™10,xy, U fI1x)y =e711,xy .

20. The system according to claim 15, further configured
to:

receive, using the input qubit, the I}

input random state; and

state defining an

state defining an
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act on the input random state using a controlled estimation
unitary operator circuit U,_,, comprising:
the controlled unitary operator circuit U,
at least one bit-flip operator X, and
at least one phase-shift operator R
wherein the controlled estimation unitary operator cir-
cuit Ug_pn=e" ™10y (0IQU +¢™7I1) (11QU,T.

* %k ko ok
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